Periodic Trajectories for Evolution Equations in Banach Spaces

نویسنده

  • MIRCEA D. VOISEI
چکیده

The existence of periodic solutions for the evolution equation y′(t) + Ay(t) 3 F (t, y(t)) is investigated under considerably simple assumptions on A and F . Here X is a Banach space, the operator A is m-accretive, −A generates a compact semigroup, and F is a Carathéodory mapping. Two examples concerning nonlinear parabolic equations are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces

This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.

متن کامل

On Uniform Exponential Stability of Periodic Evolution Operators in Banach Spaces

The aim of this paper is to obtain some discrete-time characterizations for the uniform exponential stability of periodic evolution operators in Banach spaces. We shall also obtain a discrete-time variant for Neerven’s theorem using Banach sequence spaces and a new proof for Neerven’s theorem.

متن کامل

New Criteria for the Existence of Periodic and Almost Periodic Solutions for Some Evolution Equations in Banach Spaces

In this work we give a new criteria for the existence of periodic and almost periodic solutions for some differential equation in a Banach space. The linear part is nondensely defined and satisfies the Hille-Yosida condition. We prove the existence of periodic and almost periodic solutions with condition that is more general than the known exponential dichotomy. We apply the new criteria for th...

متن کامل

New results for fractional evolution equations using Banach fixed point theorem

In this paper, we study the existence of solutions for fractional evolution equations with nonlocalconditions. These results are obtained using Banach contraction xed point theorem. Other resultsare also presented using Krasnoselskii theorem.

متن کامل

Periodic Solutions of Second Order Nonlinear Functional Difference Equations

The development of the study of periodic solution of functional difference equations is relatively rapid. There has been many approaches to study periodic solutions of difference equations, such as critical point theory, fixed point theorems in Banach spaces or in cones of Banach spaces, coincidence degree theory, KaplanYorke method, and so on, one may see [3-7,11,13-15] and the references ther...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005